Saccharomyces cerevisiae mms19 mutants are deficient in transcription-coupled and global nucleotide excision repair.

نویسندگان

  • M Lombaerts
  • M Tijsterman
  • R A Verhage
  • J Brouwer
چکیده

The recently cloned Saccharomyces cerevisiae MMS19 gene appears to be involved in both nucleotide excision repair (NER) and transcription, which is also the case for components of the NER/transcription complex TFIIH. Unlike TFIIH however, the Mms19 protein does not affect NER in a highly purified in vitro system. In order to investigate the role of Mms19 in NER, we have analysed the repair capacity of the mms19 disruption mutant. We find that a cell-free extract of this mutant is deficient for NER in vitro. Since mms19 mutants are only moderately sensitive to irradiation with ultraviolet (UV) light, it is possible that such mutants are specifically deficient in one of the two modes of NER, i.e. transcription-coupled or global genome repair. To investigate this possibility, we have analysed the removal of cyclobutane-pyrimidine dimers (CPDs) at the nucleotide level in an mms19 mutant. Repair of CPDs was not detectable for both transcribed and non-transcribed sequences in this mutant, demonstrating a requirement for Mms19 in both transcription-coupled and global genome repair. Our data, combined with those obtained by others, suggest that Mms19 is required for NER in yeast, although it seems likely that the protein plays an indirect role in this process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mms19 protein functions in nucleotide excision repair by sustaining an adequate cellular concentration of the TFIIH component Rad3.

Nucleotide excision repair (NER) is a major cellular defense mechanism against DNA damage. We have investigated the role of Mms19 in NER in the yeast Saccharomyces cerevisiae. NER was deficient in the mms19 deletion mutant cell extracts, which was complemented by the NER/transcription factor TFIIH, but not by purified Mms19 protein. In mms19 mutant cells, protein levels of the core TFIIH compon...

متن کامل

Repair of rDNA in Saccharomyces cerevisiae: RAD4-independent strand-specific nucleotide excision repair of RNA polymerase I transcribed genes.

Removal of UV-induced pyrimidine dimers from the individual strands of the rDNA locus in Saccharomyces cerevisiae was studied. Yeast rDNA, that is transcribed by RNA polymerase I(RNA pol I), is repaired efficiently, slightly strand-specific and independently of RAD26, which has been implicated in transcription-coupled repair of the RNA pol II transcribed RPB2 gene. No repair of rDNA is observed...

متن کامل

Transcription-coupled and global genome repair in the Saccharomyces cerevisiae RPB2 gene at nucleotide resolution.

Repair of UV-induced cyclobutane pyrimidine dimers (CPDs) was examined at single nucleotide resolution in the yeast Saccharomyces cerevisiae, using an improved protocol for genomic end-labelling. To obtain the sensitivity required for adduct detection in yeast, an oligonucleotide-directed enrichment step was introduced into the current methodology developed for adduct detection in Escherichia c...

متن کامل

Cloning of a human homolog of the yeast nucleotide excision repair gene MMS19 and interaction with transcription repair factor TFIIH via the XPB and XPD helicases.

Nucleotide excision repair (NER) removes UV-induced photoproducts and numerous other DNA lesions in a highly conserved 'cut-and-paste' reaction that involves approximately 25 core components. In addition, several other proteins have been identified which are dispensable for NER in vitro but have an undefined role in vivo and may act at the interface of NER and other cellular processes. An intri...

متن کامل

A role for checkpoint kinase-dependent Rad26 phosphorylation in transcription-coupled DNA repair in Saccharomyces cerevisiae.

Upon DNA damage, eukaryotic cells activate a conserved signal transduction cascade known as the DNA damage checkpoint (DDC). We investigated the influence of DDC kinases on nucleotide excision repair (NER) in Saccharomyces cerevisiae and found that repair of both strands of an active gene is affected by Mec1 but not by the downstream checkpoint kinases, Rad53 and Chk1. Repair of the nontranscri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 25 20  شماره 

صفحات  -

تاریخ انتشار 1997